Alcoholic liver disease

Role of nutrition as risk factor and therapeutic options

Prof. Dr. med. Peter. E. Ballmer
Department Medizin
Kantonsspital Winterthur
peter.ballmer@ksw.ch

Risk factors for ALD

- > Other risk factors
 - nutritional status
 - gender (female)
 - overweight >10 yrs
 - genetic factors
 - ethnic differences

	Overweight Patients	Nonoverweight Patients	P
Number of patients	172	1.432	
Presence of cirrhosis (%)	103 (60)	505 (35)	<.001
Females (%)	41 (24)	366 (26)	NS
Age (y)	56 ± 9	46 ± 12	<.001
Total duration of alcohol abuse (y)	26 ± 12	22 ± 13	<.01
Alcohol intake over the last 5 years (g/d)	121 ± 73	117 ± 78	NS
BMI from minimum weight in the			
last 10 years	29 ± 2	21 ± 3	<.001
BMI 1 year before hospitalization	31 ± 4	22 ± 4	<.001
Midarm fat area expressed as a percent of the standard value of the age- and sex-specific 50th percentile at admission	103 ± 58	54 ± 36	<.001
Midarm muscle area expressed as a percent of the standard value of the age- and sex-specific 50th percentile at admission	105 ± 21	80 ± 26	<.001
Presence of ascites at admission (%)	62 (36)	316 (22)	<.001

Alcoholic liver disease (ALD)

- **➤ Major health issue**
- No FDA-approved treatments
- Treating complications remains the mainstay of therapy

Overview: Chronic changes in liver disease

Of heavy long-term drinkers:

- > 90 % fatty liver
- > 10-30 % alcoholic hepatitis
- > 8-20 % cirrhosis

In the 80s...

...nutrition was seen as primary cause of liver injury in ALD.

>,Although, experimentally, malnutrition may not be essential for the development of alcoholic hepatitis, clinically, it appears to precede the development of the liver injury, which suggests an interaction".

	Severity of Disease			
	None	Mild	Moderate	Severe
Anorexia [†]	9.5	46.2	63.0	65.7
Weight loss**,†	9.5	36.8	27.1	16.2 **
rever	0	18.0	26.2	19.2
Hepatomegaly	0	85.9	97.1	88.9
Splenomegaly [†]	4.8	24.5	38.6	46.2
Infection	0	5.2	16.8	8.1
Pancreatitis	4.8	13.6	10.3	10.1
Gastrointestinal bleeding	0	10.4	7.5	14.1

t p < 0.005

^{**} increasing incidence of ascites

Nowadays...

...it is accepted that ALD can develop in well-nourished individuals.

> Causative factor:

Critical "threshold"

Threshold for alcohol intake, which must be reached:

- ➤ Daily intake of alcohol for 10-12 years
- > Doses in excess of:
 - → 40-80 g/day for males
 - → 20-40 g/day for females

Alcoholic «front runners»

Slovenia: a good example

- Slovenia on second position
- Big fall despite proximity to other Eastern European nations with large increases
- Social support and alcoholic policy

Critical drinking pattern

Increased prevalence in alcohol related liver disease

- > Drinking alcohol outside mealtimes
- > Drinking multiple different alcoholic beverages

Malnutrion in ALD

> Prevalence: 20-90% (65 % viral heaptitis)

- > n = 60
- Patients with end stage liver disease prior to liver transplantation
- Comparison of different nutritional assessements

➤ Most frequent complication in liver disease and cirrhosis

Ausmass des Problems

Clinical Nutrition 29 (2010) 38-41

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

Original Article

Prevalence of undernutrition on admission to Swiss hospitals

Reinhard Imoberdorf^{a,*}, Remy Meier^b, Peter Krebs^c, Paul J. Hangartner^d, Bernhard Hess^e, Max Stäubli^f, Daniel Wegmann^g, Maya Rühlin^a, Peter E. Ballmer^a

7 Hospitals, 32'837 Patients

^a Medizinische Klinik, Kantonsspital Winterthur, CH-8401 Winterthur, Switzerland

^b Medizinische Universitätsklinik Liestal, CH-4410 Liestal, Switzerland

^c Spital Uster, CH-8610 Uster, Switzerland

^d Spital Altstätten, CH-9450 Altstätten, Switzerland

^e Spital Zimmerberg, CH-8810 Horgen, Switzerland

^f Spital Zollikerberg, CH-8125 Zollikerberg, Switzerland

^g Kantonsspital Nidwalden, CH-6370 Stans, Switzerland

Ausmass des Problems

Ausmass des Problems

Malnutrition

Immune status ↓
Infections ↑
Complications ↑

LOS ↑
Costs ↑

Treatment tolerance ↓

Mental state ↓

QoL ↓

Prognosis↓ Morbidity↑ Mortality↑

Malnutrition in ALD

- ➤ Malnutrition = most frequent complication of ALD
- > Severity of malnutrition depends on:

Dietary intake

- Data from two Veterans
 Administration Cooperative
 Studies
- > n = 245
- Patients with alcoholic hepatitis
- 6- month mortality associated with 1-month daily dietary intake

Subjective global assessment (SGA)

Body mass index (BMI) vs. Sarcopenia

- > Two cirrhotic patients
- > Identical BMI (32 kg/m²)
- Abdominal CT images L3

Skeletal muscles

Sarcopenic
L3 SMI 50 cm²/m²
(SMI=Skeletal Muscle Index)

Not sarcopenic L3 SMI 71 cm²/m²

Body mass index (BMI) vs. Sarcopenia

- > Retrospective study
- > n = 120
- Patients with liver cirrhosis
- > Abdominal CT scan

> Sarcopenia is independently associated with mortality

Potential mechanisms of sarcopenia

Malnutrition in ALD

Signs and Symptoms:

- Decreased lean body mass
- Various vitamin deficiences
- > Decrease serum proteins

Basis:

- Decreased food intake
- ➤ High caloric content of alcohol (7.1 kcal/g = empty calories)
- > Decreased processing and storage of nutrients
- Poor absorption and digestion

Role of nutrition as therapeutic option

- Abstinence
- > Agents to suppress inflammation
- Nutritional improvement
- Promoters of hepatic regeneration
- Modifiers of metabolism
- > Fibrosis inhibitors
- > Anabolic steroids
- > Hypertension

Treatment of ALD

Abstinence!

- > 15-year follow-up study
- > n = 100
- "abstinent" (no or < 10 g ethanol/day)</p>
- ➤ 18 patients were not included in the analyses because of death within a month

Treatment of ALD

Nutritional support

- ➤ Caloric intake → 2000 kcal (35-40 kcal per kg BW per day)
- ➤ Protein intake → 1.2 1.5 g per kg BW per/ day
- > Encourage late evening snacks and short intervals between meals
 - decreases post-absorptive state
- > 6 to 7 meals/snacks per day, late evening snacks (50 g CHO)
 - **→ CHO** oxidation increase, lipid & protein oxidation decrease

Treatment of ALD ff.

- ➤ Late evening snacks high in protein → anabolism at night, preventing muscle loss
- > Enteral tube feeding well-tolerated, may improve hepatic function but no conclusive effect on skeletal muscle
- ➤ Parenteral nutrition → long-term effects unknown
- > AA, BCAA, leucine supplementation: see later

Nutritional therapy in cirrhosis/alcoholic hepatitis – Meta-analysis

- > 13 controlled trials (1980 bis 2012)
- > n = 329
- > 9 enteral, 4 intravenous trials
- > at least 75 % of nutritional demands
 - Reduced mortality (RR 0.80, 95% CI 0.64-0.99)
 - Prevented hepatic encephalopathy (RR 0.73, 95% CI 0.55-0.96)
 - Prevented infection (RR 0.66, 95% CI 0.45-0.98)

Route of nutritional support

Route of nutritional support:

Normal food

Enrichment

Oral Nutritional Supplements - ONS

Enteral nutrition

Parenteral nutrition

- Parenteral nutrition is rarely indicated
- > ONS may be not effective because of poor intake and compliance
- However ONS are effective when consumed!

Route of nutritional support ff.

Oral Nutritional Supplements

(Synonyme in Deutsch)

- > Trinknahrung
- > Zusatztrinknahrung (sondenfreie enterale Ernährung)
- > Orale Supplemente
- > Trinknahrungssupplemente

Effect of increase in nutrition

Oral Nutritional Supplements

	ONS	DC (Dietary Counseling)	
	Dietary counseling & ONS	Dietary counseling alone	
Hand grip			
Peak flow			
QoL	8 x	3 x	
Re-admissions	26 %	48 %	

Today...

Oral Nutritional Supplements

- > 4'000 randomised clinical studies
- > 360'000 participants

Improvement of nutritional status

Oral Nutritional Supplements

- > 81-90% Studies: improvement
- > 46-60% Studies: significant improvement
 - ➤ Highly effective wenn BMI < 20 kg/m²
 - > Irrespective of place (hospital, nursing home, community)

Decrease in LOS

Average decrease:

Schützt Kaffee die Leber – oder doch viel mehr?

Vom Gift zum rezeptfreien Allheilmittel: Kaffee macht Karriere

NUTRITION-NEWS

Decrease in liver cirrhosis by coffee consumption (Meta-Analysis)

Relation between cups of coffee & liver cirrhosis

Liver-associated mortality & coffee consumption

Decrease in mortality by <u>46 %</u> if daily consumption is 2-3 Tassen coffee

(RR 0.54, 95% CI 0.17-0.50)

HCC risk & coffee consumption

- √ RR 0.60 any coffee consumption
- ✓ RR 0.72 low consumption Konsum (~ 1-3 Tassen?)
- √ RR 0.44 high consumption (~ 3- >8 Tassen?)
 (versus no consumption)

Coffee consumption 1/cancer development

- Liver cancer (RR 0.50)
- Colorectal cancer (RR 0.83)
- Postmenopausal breast cancer
- Advanced prostate cancer
- > Survivors with breast or prostate cnacer

Coffee consumption 1/cancer development

Potential mechanisms of plant chemicals

(Phytochemicals, e.g. Polyphenole)

- Decrease in oxidative damage
- Regulation of DNA-repair
- > Antiproliferativ
- Antiangiogenetic
- > Antimetastatic
- > Etc.

Treatment of ALD

NAS (No Added Salt) Diet

- ➤ No salt cooking
- ➤ Up to 100 g hard cheese per wk
- > Up to 4 slices bread per d
- > Limit processed foods/salty foods (sauces, soups, crisps, cured meats etc.)

Type of formula - BCAA

Branched-chain amino acids:

- >,,Use BCAA-enriched formulae in patients with hepatic encephalopathy arising during enteral nutrition." [ESPEN guidelines]
- > Improvement in hepatic encephalopathy:

	BCAA		Other supplement		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
Hayashi 1991	22	32	5	26	26.2%	3.58 [1.57, 8.13]	<u> </u>	
Marchesini 1990	24	30	12	34	73.8%	2.27 [1.39, 3.70]	•	
Total (95% CI)		62		60	100.0%	2.55 [1.68, 3.89]	•	
Total events	46		17					
							0.01 0.1 1 10 100 Favours control Favours BCAA	

Therapeutic relevance

Effect of BCAA supplementation – Nutritional intervention!

➤ Retrospective study (n = 120), abdominal computed tomography scan

BCAA – The Evidence

Hepatic Encephalopathy (HE)

- ➤ No convincing evidence for BCAA
- ➤ Meta-Analysis: Improvement of mental state, no benefit for survival
- > Postoperative (liver resection) no increase HE with conventional AA solution
- ➤ Liver adapted AA solution (increased BCAA) in more severe HE (III-IV)

Type of formula – Fatty acids

Dietary fatty acids – investigated in animal models:

Saturated fat, % energy	Treatment	Protein	Carbohydrate	Corn oil	Saturated fat1	Ethanol
				g/L		
0	Control	133	115	52	0	0
	Ethanol	133	5	52	0	90
10	Control	133	115	40	12	0
	Ethanol	133	5	40	12	90
20	Control	133	115	28	24	0
	Ethanol	133	5	28	24	90
30	Control	133	115	16	36	0
	Ethanol	133	5	16	36	90

¹ Saturated fat = beef tallow:MCT oil (18:82, v:v).

- > Rats fed intragastrically by total enteral nutrition
- Diets with or without alcohol
- Difference in saturated fatty acid

Type of formula – Fatty acids

Type of formula – Fatty acids

Unsaturated fatty acids:

> increase oxidative stress

Saturated fatty acids

> are protective

In ALD – things may be different

Nutritional therapy– health effects

Very likely:

➤ Nutritional status ♠

Probable:

- ➤ Mortality
- ➤ Cell mediated immunity ↑
- ➤ Liver injury **\Psi** (glycoproteins,caseine, various polyphenols)
- \triangleright Infectious complications Ψ (serotonin, the calming transmitter \spadesuit)
- ➤ Hospitalizations

Conclusion

Nutrition is a risk factor for and in ALD:

- Nutritional status, especially overweight, increases the risk for developing ALD.
- Malnutrition is the most frequent complication and adversely affects mortality (and morbidity).
- Data investigating the effect of nutritional therapy on clinical parameters are sparse. Giving ONS have to be considered!
- ➤ There is a need for standardized assessments of nutritional parameters in ALD.

Conclusion

Considering the risk versus benefit:

Nutritional therapy is an essential therapeutic intervention in ALD!

